Math, asked by kaurharjot2127, 1 year ago

If sec theta+tan theta=x, obtain the values of sec theta,tan theta, sin theta

Answers

Answered by MaheswariS
47

\textbf{Given:}

\bf\,x=sec\,\theta+tan\,\theta........(1)

\frac{1}{x}=\frac{1}{sec\,\theta+tan\,\theta}{\times}\frac{sec\,\theta-tan\,\theta}{sec\,\theta-tan\,\theta}

\frac{1}{x}=\frac{sec\,\theta-tan\,\theta}{sec^2\theta-tan^2\theta}

\frac{1}{x}=\frac{sec\,\theta-tan\,\theta}{1}

\bf\frac{1}{x}=sec\,\theta-tan\,\theta.................(2)

\text{Adding (1) and (2)}

x+\frac{1}{x}=sec\,\theta+tan\,\theta+sec\,\theta-tan\,\theta

\implies\frac{x^2+1}{x}=2\,sec\,\theta

\implies\bf\,sec\,\theta=\frac{x^2+1}{2x}...........(3)

\text{Subtracting (2) from (1)}

x-\frac{1}{x}=sec\,\theta+tan\,\theta-sec\,\theta+tan\,\theta

\implies\frac{x^2-1}{x}=2\,tan\,\theta

\implies\bf\,tan\,\theta=\frac{x^2-1}{2x}...........(4)

\text{Dividing (4) by (3)}

\displaystyle\frac{tan\,\theta}{sec\,\theta}=\frac{\frac{x^2-1}{2x}}{\frac{x^2+1}{2x}}

\displaystyle\frac{sin\,\theta/cos\,\theta}{1/cos\,\theta}=\frac{x^2-1}{x^2+1}

\implies\displaystyle\bf\,sin\,\theta=\frac{x^2-1}{x^2+1}

Answered by navya04114
7

Answer:

I hope it will help you

Attachments:
Similar questions