Math, asked by romasevkani631, 1 year ago

If sec theta + tan theta =x prove that sin tjeta =x²-1/x²+1

Answers

Answered by Niks02
30
Hope this answer may help
Attachments:
Answered by Anonymous
11

Correct Question:-

 \sf If  \blue{ sec\theta+tan\theta=x} \: then \: prove \: that  \: \red{ sin \theta= \dfrac{ {x}^{2} - 1 }{ {x}^{2}  + 1} }

Identities used

  \sf\pink {\bigstar{ {sec}^{2} \theta -  {tan}^{2}  \theta = 1 }}

 \green{ \sf \bigstar \: tan \theta =  \dfrac{sin \theta}{cos \theta} }

 \orange{ \sf \bigstar \:  \dfrac{1}{sec \theta} = cos \theta }

Solution:-

⠀⠀⠀

We have R•H•S

 \implies \sf \dfrac{ {x}^{2} - 1 }{ {x}^{2}  + 1}

Now putting the value of x in above

⠀⠀⠀

 \sf \implies  \dfrac{{( sec \theta +tan \theta ) }^{2} - 1}{{( sec \theta +tan \theta ) }^{2}  +  1}

⠀⠀⠀

 \sf \implies \dfrac{ {sec}^{2}  \theta + tan^{2}  \theta + 2sec  \theta.tan \theta - 1}{ {sec}^{2}  \theta + tan^{2}  \theta + 2sec  \theta.tan \theta  + 1}

Now,by using below trignometric identity ,we get

⠀⠀⠀

  \sf\pink {\bigstar{ {sec}^{2} \theta -  {tan}^{2}  \theta = 1 }}

⠀⠀⠀

 \sf \implies \dfrac{ {sec}^{2}  \theta + tan^{2}  \theta + 2sec  \theta.tan \theta -{ ({sec}^{2} \theta -  {tan}^{2}  \theta ) }}{ {sec}^{2}  \theta + tan^{2}  \theta + 2sec  \theta.tan \theta  +{ ({sec}^{2} \theta -  {tan}^{2}  \theta ) } }

⠀⠀⠀

\sf \implies \dfrac{  \cancel{{sec}^{2} } \theta + tan^{2}  \theta + 2sec  \theta.tan \theta -{ \cancel{ {sec}^{2} \theta } +   {tan}^{2}  \theta  }}{ {sec}^{2}  \theta + \cancel{ tan^{2}  \theta }+ 2sec  \theta.tan \theta  +{ {sec}^{2} \theta -   \cancel{{tan}^{2}  \theta} } }

⠀⠀⠀

\sf \implies \dfrac{  tan^{2}  \theta + 2sec  \theta.tan \theta  +  {tan}^{2}  \theta }{ {sec}^{2}  \theta  + 2sec  \theta.tan \theta + {sec}^{2} \theta }

⠀⠀⠀

\sf \implies \dfrac{ 2 tan^{2}  \theta + 2sec  \theta.tan \theta}{ 2{sec}^{2}  \theta  + 2sec  \theta.tan \theta }

⠀⠀⠀

\sf \implies \dfrac{ \cancel{2} ( tan^{2}  \theta + sec  \theta.tan \theta)}{ \cancel{ 2}({sec}^{2}  \theta  + sec  \theta.tan \theta )}

⠀⠀⠀

 \sf \implies \dfrac{ {tan \theta}  \cancel{( tan \theta + sec  \theta)}}{sec \theta \cancel{({sec} \theta  +tan \theta )} }

⠀⠀⠀

 \sf \implies \: tan \theta \times  \dfrac{1}{sec \theta}

⠀⠀⠀

 \implies \sf \dfrac{sin \theta}{ \cancel{cos \theta}}  \times  \cancel{cos \theta}

⠀⠀⠀

 \sf \implies \red{ \sin \theta}

⠀⠀⠀

 \sf \implies \blue{L.H.S}

⠀⠀⠀

Hence,proved

Similar questions