Math, asked by Mister360, 3 months ago

If sec theta + tan theta = x, then prove that
\bf sin \theta = \dfrac{x^{2} - 1}{x^2 + 1}

Don't skip a single step

Answers

Answered by ItzFadedGuy
55

Given:

\implies\tt{sec\theta + tan\theta= x}

To prove:

\implies\tt{sin \theta = \dfrac{x^{2} - 1}{x^2 + 1}}

Solution:

\implies\tt{sec\theta + tan\theta= x\:\:(1)}

On taking reciprocal on both LHS and RHS, we get:

\implies\tt{ \dfrac{1}{sec\theta + tan\theta}=  \dfrac{1}{x}}

Now, we are going to apply Rationalisation method. We are going to multiply \tt{sec\theta - tan\theta} on both the numerator and denominator in LHS

\implies\tt{\dfrac{1(sec\theta-tan\theta)}{sec\theta + tan\theta(sec\theta-tan\theta)}=  \dfrac{1}{x}}

At the denominator side, in LHS, we are going to use the identity:

\green{\boxed{\tt{(a + b)(a - b) = a {}^{2}  - b {}^{2}}}}

\implies\tt{\dfrac{sec\theta-tan\theta}{sec^2\theta-tan^2\theta}=  \dfrac{1}{x}}

As we know that,

\implies\tt{tan^2\theta+1 = sec^2\theta}

\implies\boxed{\tt{1 = sec^2\theta-tan^2\theta}}

On applying the identity, we have:

\implies\tt{\dfrac{sec\theta-tan\theta}{1}=  \dfrac{1}{x}}

\implies\tt{sec\theta-tan\theta=  \dfrac{1}{x}\:\:(2)}

On adding Equation 1 and 2, we get:

\implies\tt{sec\theta + tan\theta+sec\theta-tan\theta= x+ \dfrac{1}{x}}

\implies\tt{2sec\theta = \dfrac{x^2+1}{x}\:\:(3)}

On subtracting Equation 2 from 1, we get:

\implies\tt{sec\theta + tan\theta-(sec\theta-tan\theta)= x- \dfrac{1}{x}}

\implies\tt{sec\theta + tan\theta-sec\theta+tan\theta= \dfrac{x^2-1}{x}}

\implies\tt{2tan\theta= \dfrac{x^2-1}{x}\:\:(4)}

On dividing:

\implies\tt{\dfrac{(4)}{(3)}}

\implies\tt{\dfrac{2tan \theta}{2sec \theta} =  \dfrac{\dfrac{x {}^{2}  - 1}{x}}{ \dfrac{x {}^{2}  + 1}{x}}}

\boxed{\tt{sin \theta = \dfrac{x^{2} - 1}{x^2 + 1}}}

Hence, Proved!

Answered by ItzMeMukku
24

\sf\color{purple}Given:

\sf\color{red}To\: prove:

\implies\tt{sin \theta = \dfrac{x^{2} - 1}{x^2 + 1}}

\sf\color{red}Solution:

\implies\tt{sec\theta + tan\theta= x\:\:(1)}

On taking reciprocal on both LHS and RHS, we get:

\implies\tt{ \dfrac{1}{sec\theta + tan\theta}= \dfrac{1}{x}}

Now, we are going to apply Rationalisation method.

We are going to multiply

 \tt{sec\theta - tan\theta}

\implies\tt{\dfrac{1(sec\theta-tan\theta)}{sec\theta + tan\theta(sec\theta-tan\theta)}= \dfrac{1}{x}}

At the denominator side, in LHS, we are going to use the identity:

\green{\boxed{\tt{(a + b)(a - b) = a {}^{2} - b {}^{2}}}}

\implies\tt{\dfrac{sec\theta-tan\theta}{sec^2\theta-tan^2\theta}= \dfrac{1}{x}}

\sf\color{red}As\:we \:know\: that,

\implies\tt{tan^2\theta+1 = sec^2\theta}

\implies\boxed{\tt{1 = sec^2\theta-tan^2\theta}}

On applying the identity, we have:

\implies\tt{\dfrac{sec\theta-tan\theta}{1}= \dfrac{1}{x}}

\implies\tt{sec\theta-tan\theta= \dfrac{1}{x}\:\:(2)}

On adding Equation 1 and 2, we get:

\implies\tt{sec\theta + tan\theta+sec\theta-tan\theta= x+ \dfrac{1}{x}}

\implies\tt{2sec\theta = \dfrac{x^2+1}{x}\:\:(3)}

On subtracting Equation 2 from 1, we get:

\implies\tt{sec\theta + tan\theta-(sec\theta-tan\theta)= x- \dfrac{1}{x}}

\implies\tt{sec\theta + tan\theta-sec\theta+tan\theta= \dfrac{x^2-1}{x}}

\implies\tt{2tan\theta= \dfrac{x^2-1}{x}\:\:(4)}

On dividing:

\implies\tt{\dfrac{(4)}{(3)}}

\implies\tt{\dfrac{2tan \theta}{2sec \theta} = \dfrac{\dfrac{x {}^{2} - 1}{x}}{ \dfrac{x {}^{2} + 1}{x}}}

\boxed{\tt{sin \theta = \dfrac{x^{2} - 1}{x^2 + 1}}}

\sf\color{red}Hence,\: Proved!

━━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions