Math, asked by jeevan3293, 4 months ago


If Sec thita+Tan this =P then Sec thita -Tan thita =​

Answers

Answered by TheBrainliestUser
8

Q: If sec θ + tan θ = P then sec θ - tan θ =

Solution:

⟶ sec θ + tan θ = P

  • Multiplying (sec θ - tan θ) both sides.

⟶ (sec θ + tan θ) (sec θ - tan θ) = P (sec θ - tan θ)

⟶ sec² θ - tan² θ = P (sec θ - tan θ)

⟶ 1 = P (sec θ - tan θ)

⟶ (sec θ - tan θ) = 1/P

Answer: sec θ - tan θ = 1/P

Algebraic Identities used:

  • (a + b) (a - b) = a² - b²

Trigonometric Indentities used:

  • sec² θ - tan² θ = 1

More Trigonometric Indentities:

  • sin²θ + cos²θ = 1
  • 1 - sin²θ = cos²θ
  • 1 - cos²θ = sin²θ
  • cosec²θ - cot²θ = 1
  • cosec²θ - 1 = cot²θ
  • 1 + cot²θ = cosec²θ
  • sec²θ - tan²θ = 1
  • sec²θ - 1 = tan²θ
  • 1 + tan²θ = sec²θ
  • cot²θ • tan²θ = 1
  • sec²θ • cos²θ = 1
  • sin²θ • cosec²θ = 1
Answered by CopyThat
4

Given

  • sec θ + tan θ = P

To find

  • sec θ - tan θ

Solution

We know, sec² θ + tan² θ = 1

Then, now we get :-

  • ( sec θ + tan θ ) ( sec θ - tan θ ) = 1
  • p × ( sec θ - tan  θ ) = 1
  • ( sec θ - tan θ ) = 1 / p

∴ sec θ - tan θ = 1/p

Similar questions