If Sec thita+Tan this =P then Sec thita -Tan thita =
Answers
Answered by
8
Q: If sec θ + tan θ = P then sec θ - tan θ =
Solution:
⟶ sec θ + tan θ = P
- Multiplying (sec θ - tan θ) both sides.
⟶ (sec θ + tan θ) (sec θ - tan θ) = P (sec θ - tan θ)
⟶ sec² θ - tan² θ = P (sec θ - tan θ)
⟶ 1 = P (sec θ - tan θ)
⟶ (sec θ - tan θ) = 1/P
Answer: sec θ - tan θ = 1/P
Algebraic Identities used:
- (a + b) (a - b) = a² - b²
Trigonometric Indentities used:
- sec² θ - tan² θ = 1
More Trigonometric Indentities:
- sin²θ + cos²θ = 1
- 1 - sin²θ = cos²θ
- 1 - cos²θ = sin²θ
- cosec²θ - cot²θ = 1
- cosec²θ - 1 = cot²θ
- 1 + cot²θ = cosec²θ
- sec²θ - tan²θ = 1
- sec²θ - 1 = tan²θ
- 1 + tan²θ = sec²θ
- cot²θ • tan²θ = 1
- sec²θ • cos²θ = 1
- sin²θ • cosec²θ = 1
Answered by
4
Given
- sec θ + tan θ = P
To find
- sec θ - tan θ
Solution
We know, sec² θ + tan² θ = 1
Then, now we get :-
- ( sec θ + tan θ ) ( sec θ - tan θ ) = 1
- p × ( sec θ - tan θ ) = 1
- ( sec θ - tan θ ) = 1 / p
∴ sec θ - tan θ = 1/p
Similar questions