if sec thita-tan thita=p, then obtain values of tan thita ,sec thita, sin thita in terms of p.
Answers
Answered by
2
Step-by-step explanation:
I am taking (A) instead of theta
secA - tanA = p-----------eq1
rationalise
(secA - tanA)×(secA + tanA)/(secA + tanA) = p
(sec^2A - tan^2A)/(secA + tanA) = p
{sec^2A =1 + tan^2A}
{sec^2A - tan^2A = 1}
1/(secA + tanA) = p
secA + tanA = 1/p-------eq2
solve equations 1 and 2
secA - tanA = p
secA + tanA = 1/p
-----------------------------
2secA - 0 = p + 1/p
2secA = (p^2 +1)/p
secA = (p^2 +1)/2p
put the value of sec in equation 1 or 2
secA + tanA = 1/p
tanA = secA - 1/p
tanA = (p^2 +1)/2p - 1/p
tanA = (p^2 - 1)/2p
tanA = (p^2 - 1)/2p
sinA/cosA = (p^2 - 1)/2p (tanA = sinA/cosA)
sinA×secA = (p^2 - 1)/2p (secA = 1/cosA)
sinA × (p^2 + 1)/2p = (p^2 - 1)/2p
sinA = (p^2 - 1)/(p^2 + 1)
Similar questions
English,
6 months ago
English,
6 months ago
Business Studies,
6 months ago
Chemistry,
1 year ago
Science,
1 year ago