Math, asked by sahithibadam428, 5 months ago

if sec tita is 5 then find the cos tita and tan tita​

Answers

Answered by mathdude500
2

Answer:

Question:-

  • If secθ = 5, fimd the value of cosθ and tanθ.

Answer :-

Given :-

  • secθ = 5

To find :-

  • The value of cosθ and tanθ

Identity used :-

\bf \:cosθ =  \dfrac{1}{secθ}

\bf \: {sec}^{2} θ - {tan}^{2} θ =  1

\large{\boxed{\boxed{\sf{Solution}}}}

Part 1.

\bf \:secθ = 5

\bf\implies \:cosθ = \dfrac{1}{secθ}  = \dfrac{1}{5}

Part 2.

\bf \:secθ = 5

we know

\bf \:{sec}^{2} θ - {tan}^{2} θ =  1

\bf\implies \: {5}^{2}  -  {tan}^{2} θ = 1

\bf\implies \: {tan}^{2} θ = 5 - 1

\bf\implies \: {tan}^{2} θ = 4

\bf\implies \:tanθ \:  = 2

____________________________________________

Additional Information:-

  • sin θ = Opposite Side/Hypotenuse
  • cos θ = Adjacent Side/Hypotenuse
  • tan θ = Opposite Side/Adjacent Side
  • sec θ = Hypotenuse/Adjacent Side
  • cosec θ = Hypotenuse/Opposite Side
  • cot θ = Adjacent Side/Opposite Side

◇ Reciprocal Identities

The Reciprocal Identities are given as:

  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • cot θ = 1/tan θ
  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ

Co-function Identities

  • sin (90°−x) = cos x
  • cos (90°−x) = sin x
  • tan (90°−x) = cot x
  • cot (90°−x) = tan x
  • sec (90°−x) = cosec x
  • cosec (90°−x) = sec x

Fundamental Trigonometric Identities

  • sin²θ + cos²θ = 1
  • sec²θ - tan²θ = 1
  • cosec²θ - cot²θ = 1

Similar questions