if sec tita =m and tan tita= n , then 1/m[(m+n)+1/m+n] is equal to
Answers
Answered by
0
Answer:
cos(θ−ϕ)
cos(θ+ϕ)
=m
Apply componendo and dividendo
cos(θ+ϕ)−cos(θ−ϕ)
cos(θ+ϕ)+cos(θ−ϕ)
=
m−1
m+1
−(cos(θ−ϕ)−cos(θ+ϕ))
cos(θ+ϕ)+cos(θ−ϕ)
=
m−1
m+1
−2sin(θ)⋅sin(ϕ)
2cos(θ)⋅cos(ϕ)
=
m−1
1+m
2sin(θ)⋅sin(ϕ)
2cos(θ)⋅cos(ϕ)
=
1−m
1+m
cotθ⋅cotϕ=
1−m
1+m
tanθ=(
1+m
1−m
)⋅cotϕ
Step-by-step explanation:
hope it help you.......
Similar questions
Math,
4 months ago
Computer Science,
4 months ago
Math,
4 months ago
History,
8 months ago
English,
1 year ago