if sec tita + tan tita = p then find the value of cosec tita
Answers
Answered by
1
Answer:
(p²+1)/(p²-1)
Step-by-step explanation:
secФ + tanФ=p
1/cosФ + sinФ/cosФ =p
1+ sinФ = p.cosФ
1+ sinФ= p√(1- sinФ)
(1+sinФ)² =p²(1-sin²Ф)
(1+sinФ)(1+sinФ)= p² (1+sinФ)(1-sinФ)
(1+sinФ)/(1-sinФ) =p²
p²= (cosecФ+1)/ (cosecФ-1)
p²cosecФ -p² = cosecФ +1
cosecФ (p²-1) = p²+1
cosecФ = (p²+1)/(p²-1)
.
. Hope this helps :)
Answered by
2
Answer:
Step-by-step explanation:
Hope this helps you
Attachments:
Similar questions