Math, asked by lilly4189, 1 year ago

If sec tita + tan tita = p,then show that sin tita =p²-1 / p²+1. 

Answers

Answered by Anonymous
8
LHS = p² - 1 / p² + 1
= (sec θ + tanθ)² - 1 / (sec θ + tanθ)² + 1
= sec²θ + tan²θ + 2 secθ tanθ - 1 / sec²θ + tan²θ + 2 secθ tanθ + 1
= (sec²θ 1) + tan² θ + 2 secθ tanθ / (tan² θ + 1) + sec² θ + 2 secθ tanθ
= tan² θ + tan² θ + 2 secθ tanθ / sec²θ + sec²θ + 2 secθ tanθ
= 2 tan²θ + 2 secθ tanθ / 2 sec² θ + 2 secθ tanθ
= 2 tanθ (tanθ + secθ) / 2 secθ (tanθ + secθ)
= tanθ / secθ
= (sinθ/ cosθ) / (1/cosθ)
= sinθ
= RHS

lilly4189: thank you ! :D
Anonymous: did u undrstnd..
lilly4189: yeah
Anonymous: in wich class r u???
Answered by Samikuv
5
RHS= p2-1/p2+1
= (sec θ + tanθ)² - 1 / (sec θ + tanθ)² + 1
= sec²θ + tan²θ + 2 secθ tanθ - 1 / sec²θ + tan²θ + 2 secθ tanθ + 1
= (sec²θ 1) + tan² θ + 2 secθ tanθ / (tan² θ + 1) + sec² θ + 2 secθ tanθ
= tan² θ + tan² θ + 2 secθ tanθ / sec²θ + sec²θ + 2 secθ tanθ
= 2 tan²θ + 2 secθ tanθ / 2 sec² θ + 2 secθ tanθ
= 2 tanθ (tanθ + secθ) / 2 secθ (tanθ + secθ)
= tanθ / secθ
= (sinθ/ cosθ) / (1/cosθ)
= sinθ
Similar questions