Math, asked by krishnachalilondon, 1 year ago






If sec ∅= x+1/4x, prove that :



Sec ∅+ tan∅= 2x or 1/2x







Regards,




Krishnachalilondon..♥️♥️

Answers

Answered by Anonymous
11
ⓗⓔⓨ_______
ⓜⓐⓣⓔ ____
________________

Trigonometry

↪ concept is very clear what we are going to do we will find tan²@

↪ so later We can find tan@ to add with sec @

Now ,

we know from identity,

Tan²@ = Sec²@-1
=(x +1/4x)² -1
=x² +1/16x² + 2× x×1/4x -1
= (x-1/4x)²

Taking root both side

Tan @= x-1/4x

Now we have to find

Sec@+Tan@
=x+1/4x +x - 1/4x
=2x

HENCE proved....So simple

☺☺Bye Forever
Answered by Anonymous
22

\huge{\boxed{\huge{\red\star\mathfrak\purple{\large{\underline{\underline{Answer!}}}}}}}

We have,

 \huge \boxed{ \mathfrak  \red{ \sec \theta = x +  \frac{1}{4x} }}

 \therefore \:

 \bold \red{ \tan {}^{2}  \theta =  \sec {}^{2}  \theta - 1}

 \bold \red{ \implies{ \tan   \theta =( x +  \frac{1}{4x} ) {}^{2 } - 1 }}

 \bold \red{ \implies{ \tan \theta = x {}^{2}  +  \frac{1}{16x {}^{2} }  +  \frac{1}{2} - 1 }}

 \bold \red{ \implies{ \tan \theta = (x -  \frac{1}{4x}   ) {}^{2} }}

 \bold \red{  \implies \tan \theta =  ±  (x -  \frac{1}{4x} )}

 \bold \red{ \implies(x -  \frac{1}{4x} ) \: or \: - ( x -  \frac{1}{4x} )}

When,

 \huge \boxed{ \mathfrak \pink{ \tan \theta = -  (x -  \frac{1}{4x} )}}

  \bold \pink{\sec \theta  +  \tan \theta = x +  \frac{1}{4x}  + x -  \frac{1}{4x}  = 2x}

When,

 \huge \boxed{ \mathfrak \purple{ \tan \theta = -  (x -  \frac{1}{4x} )}}

 \bold \purple{ \sec \theta  +  \tan \theta = (x +  \frac{1}{4x} ) - (x -  \frac{1}{4x} )}

 \bold \purple{ =  \frac{2}{4x} =  \frac{1}{2x}  }

Hence,

 \huge{{\huge{\boxed{\huge{\red\star\mathfrak\purple{\large{\underline{\underline{ \sec \theta +  \tan \theta = 2x \: or \:  \frac{1}{2x} }}}}}}}}}

 \huge \boxed{ \mathfrak\orange{hence \: proved}}

Similar questions