Math, asked by kartikvasistha48, 7 hours ago

If secϴ= x+1/4x , then the value of secϴ + tanϴ is​

Answers

Answered by xSoyaibImtiazAhmedx
1

Given ,

  • secϴ = \bold{x+\frac{1}{4x}}

To find:-

  • secϴ + tanϴ

We know that ,

» \:  \:   \bold{ 1 + tan²ϴ = sec²ϴ}

→ tan \theta \:  =   ± \sqrt{sec ^{2} \theta - 1 }

→ tan \theta \:  =   ± \sqrt{ {(x +  \frac{1}{4x}) }^{2}  - 1 }

→ tan \theta \:  =   ± \sqrt{ { (\frac{4 {x}^{2} + 1 }{4x}  } )^{2}  - 1 }

→ tan \theta \:  =   ± \sqrt{ { (\frac{(4 {x}^{2}) ^{2}  +2 \times 4 {x}^{2}  \times  1  +  { 1 }^{2} }{16 {x}^{2} })  }  - 1 }

→ tan \theta \:  =   ± \sqrt{ { (\frac{16 {x}^{4}   +8{x}^{2}    +  1  }{16 {x}^{2} })  }  - 1 }

→ tan \theta \:  =   ± \sqrt{ { (\frac{16 {x}^{4}   +8{x}^{2}    +  1  - 16 {x}^{2}  }{16 {x}^{2}  })  }  }

→ tan \theta \:  =   ± \sqrt{ { (\frac{16 {x}^{4}    - 8{x}^{2}    +  1   }{16 {x}^{2}  })  }  }

→ tan \theta \:  =   ± \sqrt{ { (\frac{ {(4 {x}^{2}) }^{2}    - 2 \times 4{x}^{2}  \times 1   +   {1}^{2}    }{ {(4 x )}^{2}   })  }  }

→ tan \theta \:  =   ± \sqrt{ { (\frac{  {(4 {x}^{2} - 1) }^{2}   }{ {(4 x )}^{2}   })  }  }

→ tan \theta \:  =   ± \sqrt{ { (\frac{  4 {x}^{2} - 1 }{ 4 x    })  } ^{2}  }

→ tan \theta \:  =   ±  { (\frac{  4 {x}^{2} - 1 }{ 4 x    })  }

→   \bold{\underline{tan \theta \:  =   ±  (x -  \frac{1}{4x} )}}

If tanϴ = \bold{x\: – \frac{1}{4x}}

Then , secϴ + tanϴ

= x + 1/4x + x – 1/4x

= 2x

★ If tanϴ = \bold{–(x\: – \frac{1}{4x})}

Then , secϴ + tanϴ

= x + 1/4x + {–(x – 1/4x)}

= x + 1/4x – (x – 1/4x)

= x + 1/4x – x + 1/4x

= 2 × 1/4x

= 1/2x

Similar questions
Math, 8 months ago