Math, asked by MrUnknown9851, 7 months ago

If ( sec X- 1)(sec X+1) =1/3 then cos X=___.


No spam for today pls​

Answers

Answered by anindyaadhikari13
4

Answer:-

Given,

 \sf( \sec(x)  - 1)( \sec(x)  + 1) =  \frac{1}{3}

 \sf \implies \sec^{2} (x)  - 1  =  \frac{1}{3}

 \sf \implies \sec^{2} (x) =1 +   \frac{1}{3}

 \sf \implies \sec^{2} (x)  =   \frac{4}{3}

 \sf \implies \sec (x)  =    \sqrt{ \frac{4}{3} }

 \sf \implies \sec (x)  =    \frac{2}{ \sqrt{3 }}

 \sf \implies \cos (x)  =    \frac{ \sqrt{3} }{2}

Hence,

 \boxed{ \sf  \large\cos (x)  =    \frac{ \sqrt{3} }{2}}

Answered by gayatribiradar682
4

Step-by-step explanation:

Given,

\sf( \sec(x) - 1)( \sec(x) + 1) = \frac{1}{3}(sec(x)−1)(sec(x)+1)=

3

1

\sf \implies \sec^{2} (x) - 1 = \frac{1}{3}⟹sec

2

(x)−1=

3

1

\sf \implies \sec^{2} (x) =1 + \frac{1}{3}⟹sec

2

(x)=1+

3

1

\sf \implies \sec^{2} (x) = \frac{4}{3}⟹sec

2

(x)=

3

4

\sf \implies \sec (x) = \sqrt{ \frac{4}{3} }⟹sec(x)=

3

4

\sf \implies \sec (x) = \frac{2}{ \sqrt{3 }}⟹sec(x)=

3

2

\sf \implies \cos (x) = \frac{ \sqrt{3} }{2}⟹cos(x)=

2

3

Hence,

\boxed{ \sf \large\cos (x) = \frac{ \sqrt{3} }{2}}

cos(x)=

2

3

Similar questions