Math, asked by MrUnknown9851, 5 months ago

If sec X=13/12 find sin X 
Solve this pls
no spam for today​

Answers

Answered by anindyaadhikari13
5

Answer:-

Given,

 \sf \sec(x)  =  \frac{13}{12}

Then,

 \sf \cos(x)  =  \frac{1}{ \sec(x) }  =  \frac{12}{13}

Now,

we know that,

 \sf { \sin}^{2} (x) +  { \cos}^{2} (x) = 1

So,

 \sf \sin(x) =  \sqrt{1 -   { \cos}^{2} (x)}

 \sf =   \sqrt{1 -  (\frac{12}{13}) ^{2} }

 \sf =   \sqrt{1 -  (\frac{144}{169}) }

 \sf =   \sqrt{ (\frac{169 - 144}{169}) }

 \sf =   \sqrt{ (\frac{25}{169}) }

 \sf =  \frac{5}{13}

Hence,

 \boxed{  \sf \large\sin(x)  =  \frac{5}{13} }

Similar questions