Math, asked by sasibro1671, 11 months ago

If sec X cosec x = 2, then tan^n X + cot^n X equal to ?

Answers

Answered by rishu6845
2

Answer:

plzzz give me brainliest ans and plzzzz follow me please

Attachments:
Answered by hukam0685
2

Answer:

 {tan}^{n} x + {cot}^{n} x = 2 \\

Step-by-step explanation:

As we know that

sec \: x =  \frac{1}{cos \: x}  \\  \\cosec \: x =  \frac{1}{sin \: x}  \\  \\ if \: sec \: x \: cosec \: x = 2 \\  \\ \frac{1}{cos \: x} \times \frac{1}{sin\: x} = 2 \\  \\ cross \: multiplying \\  \\ 1 = 2 \: sin \: x \: cos \: x \\  \\ we \: know \: that \\  \\ 2 \: sin \: x \: cos \: x = sin \: 2x \\  \\ sin \: 2x = 1 \\  \\ sin \: 2x = sin \: 90° \\  \\ 2x = 90° \\  \\ x =  \frac{90°}{2}  \\  \\ x = 45° \\  \\

We know that

tan \: 45° = 1 \\  \\ cot \: 45° = 1 \\  \\ so \\   \\ = {tan}^{n} x + {cot}^{n} x \\  \\   = {(tan \: x)}^{n}  + {(tan \: x)}^{n}   \\  \\  =  {tan}^{n} 45° + {tan}^{n} 45° \\  \\  =  {(1)}^{n}  +  {(1})^{n}  \\  \\  = 1 + 1 \\  \\  = 2 \\  \\

Hope it helps you.

Similar questions