Math, asked by sunnyka3970, 1 year ago

If ; sec x + tan x = k obtain the values of cos x

Answers

Answered by KingsleySumit
0
sec x+tan x=k
1/cos x+ sin x/ cos x=k
Therefore cos x=( 1+sin x)/k
Answered by pinquancaro
0

Answer:

The value of cos x is  \cos x=\frac{2k}{k^2+1}

Step-by-step explanation:

We have given that, \sec x+\tan x=k ....(1)

To find : The values of \cos x ?

Solution :

We know that,

\sin^2x + \cos^2x = 1

Dividing both side of expression with \cos^2 x,

\tan^2x + 1 =\sec^2 x

\sec^2 x-\tan^2x=1

Applying identity, a^2-b^2=(a+b)(a-b)

(\sec x-\tan x)(\sec x+\tan x)=1

(\sec x-\tan x)(k)=1  (Using (1))

\sec x-\tan x=\frac{1}{k}

From (1), \tan x=k-\sec x

\sec x-(k-\sec x)=\frac{1}{k}

\sec x-k+\sec x=\frac{1}{k}

2\sec x=\frac{1}{k}+k

\sec x=\frac{1+k^2}{2k}

We know, \cos x=\frac{1}{\sec x}

\cos x=\frac{1}{\frac{1+k^2}{2k}}

\cos x=\frac{2k}{k^2+1}

Therefore, The value of cos x is  \cos x=\frac{2k}{k^2+1}

Similar questions