If sec x + tan x = k, then the value of sin
x is
Answers
Answer:Sinx=kCosx-1
Step-by-step explanation:
Secx+ Tanx =k
Or, (1/Cosx)+(Sinx/Cosx)=k
Or,(1+Sinx)/Cosx=k
Or, 1+Sinx=k Cosx
Or, Sinx=kCosx-1
Answer:
secx + tanx = k → (1)
From identity sec²x-tan²x=1
→(secx+tanx)(secx-tanx)=1
secx-tanx=1/k → (2) [From (1)]
Add (1) and (2)
secx+tanx+secx-tanx = k + 1/k
2secx = (k²+1)/k
cosx = 2k/(k²+1) [secx = 1/cosx]
From identity sin²x+cos²x=1
→cos²x=1-sin²x
cosx = √(1-sin²x)
Then,
√(1-sin²x) = 2k(k²+1)
1-sin²x = [2k/(k²+1)]²
sin²x=1² - [2k/(k²+1)]²
sin²x = [(k²+1+2k)/(k²+1)] [(k²+1-2k)/(k²+1)]
sin²x = (k+1)²×(k-1)²/(k²+1)²
sinx = (k+1)(k-1)/(k²+1)
∴sinx = (k²-1)/(k²+1)
In the above steps the identity (a-b)(a+b)=a²-b² is used a lot don't be confused.