If sec x+tan x=k, then what is the value of sin x?
Answers
Answered by
13
HERE'S THE ANSWER..
__________________________
♠️ Refer the attachment..
HOPE HELPED..
:)
Attachments:
Miyeon:
Thanks
Answered by
19
we know that sin²x + cos²x = 1
dividing the above expression with cos²x we get
tan²x + 1 = sec²x
⇒ sec²x - tan²x = 1
⇒ (secx - tanx) (secx + tanx) = 1 ------ since ( a² - b² = (a + b) (a - b))
given secx + tanx = k substituting in the above we get :
⇒ secx - tanx = 1/k
⇒ (secx + tanx) + (secx - tanx) = k + 1/k
⇒ 2secx = (k² + 1/)k
⇒ secx = (k² + 1)/2k
we know that cosx = 1/secx
⇒ cosx = 2k/(k² + 1)
given secx + tanx = k
⇒ 1/cosx + sinx/cosx = k (since tanx = sinx/cosx)
⇒ 1 + sinx = k × cosx
but we got that cosx = 2k/(k² + 1) substituting we get:
⇒ 1 + sinx = k ×2k/(k² + 1)
⇒ sinx = {2k²/(k² + 1)} - 1
⇒ sinx = (2k² - k² - 1)/(k² + 1)
⇒ sinx = (k² - 1)/(k² + 1)
hence the values of sinx = (k² - 1)/(k² + 1)
Similar questions
History,
8 months ago
Geography,
8 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Science,
1 year ago