Math, asked by Choba, 1 year ago

If sec x + tan x = p, obtain the values of sec x, tan x and sin x in terms of p

Answers

Answered by Anonymous
4

Answer:

\bold\red{\sec(x)  =  \frac{ {p}^{2}  + 1}{2p}}  \\  \\   \bold\red{\tan(x)  =  \frac{ {p}^{2}  - 1}{2p}  }\\  \\   \bold\red{\sin(x)  =  \frac{ {p}^{2}  - 1}{ {p}^{2} + 1 } }

Step-by-step explanation:

Given,

 \sec(x)  +  \tan(x)  = p

Therefore,

 \sec(x)  -   \tan(x)  =  \frac{1}{p}

Therefore,

we get,

2 \sec(x)  = p +  \frac{1}{p}  \\  \\  =  >  \sec(x)  =  \frac{ {p}^{2} + 1 }{2p}

Thus,

we get,

  \tan(x)  = p -  \frac{ {p}^{2}  + 1}{2p}  =  \frac{2 {p}^{2}  -  {p}^{2}  - 1}{2p}  \\  \\  =  >  \tan(x)  =  \frac{ {p}^{2} - 1 }{2p}

But,

we know that,

 \frac{ \tan(x) }{ \sec(x) }  =  \sin(x) \\  \\  =  \sin(x)   =  \frac{ \frac{ {p}^{2}  - 1}{2p} }{ \frac{ {p}^{2} + 1 }{2p}  } \\  \\  =  >  \sin(x)  =  \frac{ {p}^{2} - 1 }{ {p}^{2}  + 1}

Hence,

  \bold{\sec(x)  =  \frac{ {p}^{2}  + 1}{2p}}  \\  \\   \bold{\tan(x)  =  \frac{ {p}^{2}  - 1}{2p}  }\\  \\   \bold{\sin(x)  =  \frac{ {p}^{2}  - 1}{ {p}^{2} + 1 } }

Similar questions