if sec x + tan x = y then cos=? in the terms of y
sumatisrivastav:
i had given the exam but question paper was not given along with it but what i still remember is something lyk x+1/x
Answers
Answered by
1
Q.E.D
Answered by
1
I am answering your original question:
If sec θ + tan θ = x then cos θ=?
SOLUTION:
sec θ + tan θ = x
∴1/cosθ + sinθ/cosθ = x
∴(1+sinθ)/cosθ = x
∴1+sinθ = x cosθ ----------- (1)
Now, we know that
sin²θ + cos²θ = 1
∴cos²θ = 1 - sin²θ
∴cos²θ = (1+sinθ)(1-sinθ) [∵a² - b² = (a+b)(a-b) ]
∴cos²θ = x cosθ (1-sinθ) [From (1) ]
∴cos²θ/x cosθ = 1-sinθ
∴cosθ/x = 1 - sinθ
∴sinθ = 1 - cosθ/x ----------------------- (2)
From (1), we know
1 + sinθ = x cosθ
∴1 + 1 - cosθ/x = x cosθ [From (2) ]
∴2 - cosθ/x = x cosθ
∴(2x - cosθ) / x = x cosθ
∴ 2x - cos θ = x² cosθ
∴2x = x² cosθ + cosθ
∴2x = cosθ (x²+1)
∴2x / (x²+1) = cosθ
∴ cos θ = 2x/(x²+1)
Please note that I have used brackets for denoting common denominators. Where I have not used brackets, it means the denominator is for a single term only.
If sec θ + tan θ = x then cos θ=?
SOLUTION:
sec θ + tan θ = x
∴1/cosθ + sinθ/cosθ = x
∴(1+sinθ)/cosθ = x
∴1+sinθ = x cosθ ----------- (1)
Now, we know that
sin²θ + cos²θ = 1
∴cos²θ = 1 - sin²θ
∴cos²θ = (1+sinθ)(1-sinθ) [∵a² - b² = (a+b)(a-b) ]
∴cos²θ = x cosθ (1-sinθ) [From (1) ]
∴cos²θ/x cosθ = 1-sinθ
∴cosθ/x = 1 - sinθ
∴sinθ = 1 - cosθ/x ----------------------- (2)
From (1), we know
1 + sinθ = x cosθ
∴1 + 1 - cosθ/x = x cosθ [From (2) ]
∴2 - cosθ/x = x cosθ
∴(2x - cosθ) / x = x cosθ
∴ 2x - cos θ = x² cosθ
∴2x = x² cosθ + cosθ
∴2x = cosθ (x²+1)
∴2x / (x²+1) = cosθ
∴ cos θ = 2x/(x²+1)
Please note that I have used brackets for denoting common denominators. Where I have not used brackets, it means the denominator is for a single term only.
Similar questions
Science,
8 months ago
Physics,
8 months ago
English,
8 months ago
Chemistry,
1 year ago
Environmental Sciences,
1 year ago
Biology,
1 year ago
Political Science,
1 year ago