Math, asked by saubhagyalll4271, 1 year ago

If sec[(x+y)/(x-y)]=a. Prove that dy/dx = (y/x)

Answers

Answered by KarupsK
118

 \frac{x + y}{x - y}  =  {sec}^{ - 1} a
differenciate with respect to x by
quotient rule

 \frac{(x - y)(1 +  \frac{dy}{dx} ) - (x + y)(1 -  \frac{dy}{dx} )}{ {(x - y)}^{2} }  = 0

 - 2y + (x - y + x + y) \frac{dy}{dx}  = 0
2x \frac{dy}{dx}  = 2y
 \frac{dy}{dx}  =  \frac{y}{x}
Answered by amitnrw
2

dy/dx = y/x  if Sec((x-y)/(x + y)) = a

Step-by-step explanation:

Sec((x-y)/(x + y)) = a

(x-y)/(x + y)  = Sec⁻¹(a)

Differentiating wrt x

=> (x - y) ( - 1/(x + y)²)(1 + dy/dx)    + (1 - dy/dx)/(x + y) = 0

multiplying by (x + y)²

=> (y - x)(1 + dy/dx)  + (1 - dy/dx)(x + y)  = 0

=> y  +  ydy/dx  - x  - xdy/dx  + x - xdy/dx  + y - ydy/dx  = 0

=>  2y = 2xdy/dx

=> dy/dx = 2y/2x

=> dy/dx = y/x

Learn more:

(x + 3)^{2} .(x + 4)^{3} .(x + 5)^{4} प्रदत्त फलनों का x के सापेक्ष अवकलन कीजिए

brainly.in/question/15287089

f(x) = (1 + x) (1 + x^{2}) (1 + x^{4}) (1 + x^{8}) द्वारा प्रदत्त फलन का अवकलज ज्ञात कीजिए और इस प्रकार f'(1) ज्ञात कीजिए।

Similar questions