Math, asked by tejasssuthrave999, 7 months ago

if sec(y/1-x)=a then find dy/dx​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \sec( \frac{y}{1 - x} )  = a

Differentiating both sides,

 =  >  \sec( \frac{y}{1 - x} ) \tan( \frac{y}{1 - x} )  . \frac{d}{dx} ( \frac{y}{1 - x} ) = 0

Since, sec(y/1-x)=a,

 =  > a \sqrt{ {a}^{2}  - 1} .( \frac{(1 - x) \frac{dy}{dx}  - y( - 1)}{ {(1 - x)}^{2} } ) = 0

 =  >  \frac{dy}{dx} (1 - x) + y = 0

 =  >  \frac{dy}{dx}  =  \frac{y}{x - 1}

Hope this will help you.....!

Similar questions