if sec0+tan0=k, then prove sec0=k2-1/k2+1
Answers
Answered by
1
Step-by-step explanation:
search-icon-header
Search for questions & chapters
search-icon-image
Class 11
>>Maths
>>Trigonometric Functions
>>Trigonometric Functions
>>If sectheta + tantheta = k ...
Question
Bookmark
If secθ+tanθ=k, then cosθ= _______.
Medium
Solution
verified
Verified by Toppr
Correct option is
B
k
2
+1
2k
Given secθ+tanθ=k
As we know that
sec
2
θ−tan
2
θ=1
⟹(secθ+tanθ)(secθ−tanθ)=1
⟹secθ−tanθ=
k
1
⟹secθ=
2
k+
k
1
=
2k
1+k
2
⟹cosθ=
k
2
+1
2k
Answered by
1
Step-by-step explanation:
Given:
secФ + tanФ = k
To prove:
secФ =
Proof:
secФ + tanФ = k ...1
We have identity,
sec^{2}Ф -tan^{2}Ф =1
(secФ + tanФ)(secФ-tanФ) = 1
k(secФ-tanФ)=1
(secФ-tanФ)=1/k ....2
Adding equations 1 and 2
secФ + tanФ = k
secФ - tanФ =1/k
2secФ = k+1/k
secФ =
Similar questions