if sec0+tan0=p,pt sec0-tan0=1/p
Answers
Answered by
2
Solution -
Given: secθ + tanθ = p
We know that, tan^2θ + 1 = sec^2θ
Therefore, sec^2θ - tan^2θ = 1
(secθ + tanθ) (secθ - tanθ) = 1
p (secθ - tanθ) = 1
secθ - tanθ = 1/p
Hence proved.
Given: secθ + tanθ = p
We know that, tan^2θ + 1 = sec^2θ
Therefore, sec^2θ - tan^2θ = 1
(secθ + tanθ) (secθ - tanθ) = 1
p (secθ - tanθ) = 1
secθ - tanθ = 1/p
Hence proved.
Answered by
3
SecФ + tanФ = p
to prove: secФ - tan Ф = 1/p
p = (secФ + tanФ)
= (secФ + tanФ) (sec Ф - tanФ)/(secФ - tanФ)
= (sec² Ф - tan²Ф) / ( secФ - tanФ)
p = 1/(secФ - tanФ)
secФ - tanФ = 1/p
to prove: secФ - tan Ф = 1/p
p = (secФ + tanФ)
= (secФ + tanФ) (sec Ф - tanФ)/(secФ - tanФ)
= (sec² Ф - tan²Ф) / ( secФ - tanФ)
p = 1/(secФ - tanФ)
secФ - tanФ = 1/p
Similar questions