Math, asked by mrbest98, 1 year ago

if sec0 + tan0= p the find the value of cosec0

Answers

Answered by smartAbhishek11
1
(sinA+cosA)X secA= (sinA+cosA)X1/cosA

=sinA/cosA+cosA/cosA

=tanA+1

=5/12+1

=17/12

Answered by MavisRee
5

Answer:

Value of cosec Θ = \frac{p^{2}+1}{p^{2}-1}

Step-by-step explanation:

Given,

sec Θ + tan Θ = p   ( Let this be Eqn 1 )

Since we know,

sec² Θ - tan² Θ = 1

We can write it as,

(sec Θ + tan Θ ) ( sec Θ - tan Θ ) = 1

Substituting the value of sec Θ + tan Θ

p ( sec Θ - tan Θ ) = 1

sec Θ - tan Θ = 1 / p   (Let this be Eqn 2 )

Adding Eqn 1 and Eqn 2,

sec Θ + tan Θ + sec Θ - tan Θ  = p + 1 / p

2 sec Θ = p + \frac{1}{p}

2 sec Θ = \frac{p^{2}+1}{p}

sec Θ = \frac{p^{2}+1}{2p}

We know,

cos Θ =  1 / sec Θ , that is,

1 / \frac{p^{2}+1}{2p}

cos Θ = \frac{2p}{p^{2}+1 }

Since,

sin Θ = √ 1 - cos² Θ

Substituting the value of cos Θ

sin Θ = \sqrt{1-(\frac{2p}{p^{2}+1 })^{2} }

= \sqrt{1-\frac{4p^{2}}{(p^{2}+1)^{2}} }

= \sqrt{\frac{(p^{2}+1)^{2}-4p^{2}}{(p^{2}+1)^{2}} }

= \sqrt{\frac{p^{4}+1+2p^{2}-4p^{2} }{(p^{2}+1)^{2}} }

= \sqrt{\frac{p^{4}+1-2p^{2}}{(p^{2}+1)^{2}} }

= \sqrt{\frac{(p^{2}-1)^{2}}{(p^{2}+1)^{2}} }

= \frac{p^{2}-1}{p^{2}+1}

So,

sin Θ =  \frac{p^{2}-1}{p^{2}+1}

Since,

cosec Θ = 1 /  sin Θ

cosec Θ = 1 /  \frac{p^{2}-1}{p^{2}+1}

cosec Θ = \frac{p^{2}+1}{p^{2}-1}

Hence,

Value of cosec Θ = \frac{p^{2}+1}{p^{2}-1}




gajendrarathorpcgdsr: THIS QUES. FROM SAMPLE QUESTION PAPER 2018-19.THANKS FOR EXPLAIN THIS QUES.
Similar questions