if sec0 + tan0= p the find the value of cosec0
Answers
Answered by
1
(sinA+cosA)X secA= (sinA+cosA)X1/cosA
=sinA/cosA+cosA/cosA
=tanA+1
=5/12+1
=17/12
=sinA/cosA+cosA/cosA
=tanA+1
=5/12+1
=17/12
Answered by
5
Answer:
Value of cosec Θ =
Step-by-step explanation:
Given,
sec Θ + tan Θ = p ( Let this be Eqn 1 )
Since we know,
sec² Θ - tan² Θ = 1
We can write it as,
(sec Θ + tan Θ ) ( sec Θ - tan Θ ) = 1
Substituting the value of sec Θ + tan Θ
p ( sec Θ - tan Θ ) = 1
sec Θ - tan Θ = 1 / p (Let this be Eqn 2 )
Adding Eqn 1 and Eqn 2,
sec Θ + tan Θ + sec Θ - tan Θ = p + 1 / p
2 sec Θ = p +
2 sec Θ =
sec Θ =
We know,
cos Θ = 1 / sec Θ , that is,
1 /
cos Θ =
Since,
sin Θ = √ 1 - cos² Θ
Substituting the value of cos Θ
sin Θ =
=
=
=
=
=
=
So,
sin Θ =
Since,
cosec Θ = 1 / sin Θ
cosec Θ = 1 /
cosec Θ =
Hence,
Value of cosec Θ =
gajendrarathorpcgdsr:
THIS QUES. FROM SAMPLE QUESTION PAPER 2018-19.THANKS FOR EXPLAIN THIS QUES.
Similar questions