If ∫ sec²(7 – 4x)dx = a tan (7 – 4x) + C, then value of a is
Answers
Answered by
17
Answer:
Ex 7.2, 22 sec 2 7 – 4 Step 1: Let 7 – 4= Differentiating both sides ... 0−4= −4= = −4 Step 2: ... Ex 7.2, 22 - Chapter 7 Class 12 Integrals ... 1 4 tan + = +.
Step-by-step explanation:
Answered by
2
Value of a is -1/4 if ∫ sec²(7 – 4x)dx = a tan (7 – 4x) + C
Given:
- ∫ sec²(7 – 4x)dx = a tan (7 – 4x) + C
To Find:
- Value of a
Solution:
- ∫ sec²(x)dx = tanx + C
- ∫ sec²(ax+b)dx = (1/a) tany + C
Step 1:
Assume y = 7- 4x
dy = -4dx
dx = -dy/4
Step 2:
Substitute 7-4x = y and dx = -dy/4
∫ sec²(7 – 4x)dx
= ∫ sec²(y)(-dy/4)
= -(1/4) ∫ sec²(y)dy
Step 3:
Integrate
-(1/4)tany + C
Step 4:
Substitute y = 7 - 4x
-(1/4)tan(7-4x) + C
Hence, ∫ sec²(7 – 4x)dx = (-1/4) tan (7 – 4x) + C
Comparing with ∫ sec²(7 – 4x)dx = a tan (7 – 4x) + C
a = -1/4
Value of a is -1/4
Similar questions