if sec²A (1+sinA) (1-sinA) = K, find the value of k
Answers
Answered by
46
HEY FRIEND
HERE IS YOUR ANSWER
sec²A (1+sinA) (1-sinA) =k
[USING (a+b)(a-b) =a²-b²]
sec²A (1-sin²A) =k
[USING cos²A+sin²A=1]
sec²A×cos²A=k
[USING sec²A=1/cos²A]
(1/cos²A) × cos²A=k
k=1
HOPE THIS HELPS YOU
HERE IS YOUR ANSWER
sec²A (1+sinA) (1-sinA) =k
[USING (a+b)(a-b) =a²-b²]
sec²A (1-sin²A) =k
[USING cos²A+sin²A=1]
sec²A×cos²A=k
[USING sec²A=1/cos²A]
(1/cos²A) × cos²A=k
k=1
HOPE THIS HELPS YOU
mohisharma:
it's very simple
Answered by
19
Hi friend,
Here is your answer,
______________________________________________________________
sec²A (1+sinA) (1-sinA) = K
=> sec²A(1-sin²A) = K {(a-b)(a+b)=a² - b²}
=> sec²A . cos²A = K {cos²A + sin²A = 1}
=> 1 ₓ cos²A = K
cos²A
=> 1 = K
Ans: K = 1
______________________________________________________________
★★★★ HOPE THIS HELPS YOU ★★★★
★★★★ PLS MARK ME AS BRAINLIEST ★★★★
Here is your answer,
______________________________________________________________
sec²A (1+sinA) (1-sinA) = K
=> sec²A(1-sin²A) = K {(a-b)(a+b)=a² - b²}
=> sec²A . cos²A = K {cos²A + sin²A = 1}
=> 1 ₓ cos²A = K
cos²A
=> 1 = K
Ans: K = 1
______________________________________________________________
★★★★ HOPE THIS HELPS YOU ★★★★
★★★★ PLS MARK ME AS BRAINLIEST ★★★★
Similar questions