if (secA+1)/tanA=x then (secA-1)=?
Answers
Answered by
1
Given secA + tanA = x → (1)
Recall that sec2A − tan2A = 1
⇒ (secA + tanA)(secA − tanA) = 1
⇒x (secA − tanA) = 1
⇒(secA − tanA) = 1/x → (2)
Subtract (2) from (1), we get
(secA + tanA) − (secA − tanA) = x − (1/x)
⇒ secA + tanA − secA + tanA = (x2 − 1)/x
⇒ 2tanA = (x2 − 1)/x
∴ tanA = (x2 − 1)/ 2x
Similar questions