Math, asked by psuraj3855, 11 months ago

if secA=13/12,find tanA and sinA

Answers

Answered by Anonymous
45

Answer:

given  : sec \: a =  \frac{13}{12}  \\  \\ proof : tan \: a = ? \:  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: sin \: a = ? \\  \\ solution :  \\  \\ sec \: a =  \frac{h}{b}   =  \frac{13}{12} \\  \\  { h}^{2}  =  {b}^{2}  +  {p}^{2}  \\  \\  {13}^{2}  =  {12}^{2}  + p^{2}  \\  \\ 169 = 144 +  {p}^{2}  \\  \\ 169 - 144 =  {p}^{2}  \\  \\ 25 =  {p}^{2}  \\  \\ p =  \sqrt{25}  \\  \\ p = 5 \\  \\ now \\  \\ sin \: a =  \frac{p}{h}  =  \frac{5}{13}  \\  \\ and \\  \\ tan \: a =  \frac{p}{b}  =  \frac{5}{12}

Hence proved.

Attachments:
Similar questions