if secA=17/8 show that 3-4sin^2A/4cos^2A-3=3-tan^2A/1-3tan^2
Answers
Answered by
18
Sec A = 17/8 => cosA = 8/17 => sinA = √[17² - 8²] / 17 = 15/17
Tan A = sinA/cosA = 15/8
LHS = [3 - 4 Sin² A ] / [4 cos² A - 3 ]
= [3 - 4* 225/289 ] / [4 * 64/289 - 3 ]
= -33 / (- 611)
RHS = [ 3 - 225/64 ] / [1 - 3 * 225/64 ]
= [ - 33 ] / [ - 611 ]
Hence proved.
Tan A = sinA/cosA = 15/8
LHS = [3 - 4 Sin² A ] / [4 cos² A - 3 ]
= [3 - 4* 225/289 ] / [4 * 64/289 - 3 ]
= -33 / (- 611)
RHS = [ 3 - 225/64 ] / [1 - 3 * 225/64 ]
= [ - 33 ] / [ - 611 ]
Hence proved.
Answered by
7
Answer:
We are given that sec A = 17/8
On comparing
Hypotenuse = 17
Base = 8
We are supposed to find
LHS =
LHS =
LHS =
RHS =
RHS =
RHS =
LHS = RHS
Hence verified
Similar questions