if secA=17/8 show that 3-4sin^2A/4cos^2A-3=3-tan^2A/1-3tan^2
Answers
Answered by
1
if sec A = 17/8 => hypotenuse (h)= 17, base (b)= 8
=> perpendicular (p) = sqrt(17*17-8*8) = 15
=> sinA = 15/17, cos A = 8/17, tan A = 15/8
now LHS
(3-4sinA*sinA)/ (4cosA*cosA-3) = (3-4*15/17*15/17)/ (4*8/17*8/17-3)
=(17*17*3-4*15*15)/(4*8*8-3*17*17)
=( 867-900)/(256-867)
= 33/611
now RHS
3-tanA*tanA/4*cosA*cosA-3 = (3-15/8*15/8)/(4*8/17*8/17-3)
= (3*8*8-15*15)/(4*8*8-3*17*17)
=(256-289)/(256-867)
= 33/611
= LHS
hence proved
=> perpendicular (p) = sqrt(17*17-8*8) = 15
=> sinA = 15/17, cos A = 8/17, tan A = 15/8
now LHS
(3-4sinA*sinA)/ (4cosA*cosA-3) = (3-4*15/17*15/17)/ (4*8/17*8/17-3)
=(17*17*3-4*15*15)/(4*8*8-3*17*17)
=( 867-900)/(256-867)
= 33/611
now RHS
3-tanA*tanA/4*cosA*cosA-3 = (3-15/8*15/8)/(4*8/17*8/17-3)
= (3*8*8-15*15)/(4*8*8-3*17*17)
=(256-289)/(256-867)
= 33/611
= LHS
hence proved
Similar questions