Math, asked by ronimalik827, 10 months ago

if seca =5/4,then find the value of 1-tana/1+tana​

Answers

Answered by Anonymous
2

Answer:

1 +  { \tan }^{2} a =  { \sec}^{2} a \\  { \tan}^{2}  =  { \sec }^{2} a - 1 \\  { \tan }^{2} a =   \frac{ {5}^{2} }{ {4}^{2} }  - 1 \\  { \tan }^{2} a =  \frac{25}{16}  - 1 \\   { \tan}^{2} a =  \frac{25 - 16}{16}  \\  { \tan}^{2} a =  \frac{9}{25}  \\  \tan(a) =  \frac{3}{5}

 \frac{1 -  \tan(a) }{1 +  \tan(a) }   \\  =  \frac{1 -  \frac{3}{5} }{1 +  \frac{3}{5} }   \\  =  \frac{ \frac{5 - 3}{5} }{ \frac{5 + 3}{5} }  \\   = \frac{5 - 3}{5 + 3}  \\  =  \frac{2}{8}  \\  =  \frac{1}{4}

hope you understand

and follow me

Similar questions