If secA = 5/4 then prove that tanA/1+tan^(2)A = sinA/secA
Answers
Answered by
3
Step-by-step explanation:
secA=AC/AB=5/4
In above figure, ∆ABC and angle B=90°.
By Pythagoras theorem:
AC²=AB²+BC²
5²-4²=BC²
25-16=BC²
√9=3=BC.
tanA=BC/AB=3/4.
tan²A=BC²/AC²=3²/4²=9/16.
cosA=AB/AC=4/5
sinA=BC/AC=3/5
LHS=tanA/1+tan²A
RHS=sinA/secA
LHS=RHS.
Hope helps u.
Attachments:
Similar questions