Math, asked by harnikhan1bensaani, 1 year ago

If secA=5/4, verify that 3sinA-4sin 3 A/4cos 3 A - 3cosA = 3tanA-tan 3 A/ 1-3tan 2 A

Answers

Answered by yagnesh214
65
ok from sec = 5/4 we can find hypo = 5k, adj side  = 4k and opp side = 3k where k is any positive no
now substituting these values in LHS and RHS we get RHS = LHS = 117/44
Answered by mysticd
76

Answer:

If \: secA=\frac{5}{4}\: then

\frac{3sinA-4sin^{3}A}{4cos^{3}A-3cosA}</p><p>=\frac{3tanA-tan^{3}A}{1-3tan^{2}A}

Step-by-step explanation:

Given secA=\frac{5}{4}---(1)

cosA = \frac{1}{secA}\\=\frac{4}{5}---(2)

Now ,

tanA = \sqrt{sec^{2}A-1}

=\sqrt{\left(\frac{5}{4}\right)^{2}-1}

=\sqrt{\frac{25}{16}-1}

=\sqrt\frac{(25-16)}{16}}

=$\sqrt{\frac{9}{16}}$

=$\frac{3}{4}$ ---(3)

LHS = \frac{3sinA-4sin^{3}A}{4cos^{3}A-3cosA}

=\frac{sinA(3-4sin^{2}A)}{cosA(4cos^{2}A-3)}

= \frac{tanA[3-4(1-cos^{2}A]}{4cos^{2}A-3}

=\frac{tanA(4cos^{2}A-1)}{(4cos^{2}A-3)}

=\frac{\frac{3}{4}\big(4\times \left(\frac{4}{5}\right)^{2}-1\big)}{4\left(\frac{4}{5}\right)^{2}-3}

After simplification, we get

= \frac{-117}{44}----(4)

RHS = \frac{3tanA-tan^{3}A}{1-3tan^{2}A}

=\frac{3\times\frac{3}{4}-\left(\frac{3}{4}\right)^{3}}{1-3\left(\frac{3}{4}\right)^{2}}

= \frac{(\frac{9}{4}-\frac{27}{64})}{1-\frac{27}{16}}

= \frac{\frac{144-27}{64}}{\frac{(16-27)}{16}}

=\frac{\frac{117}{64}}{\frac{-11}{16}}

= \frac{117}{(-11)(4)}

= \frac{-117}{44} --(5)

Therefore,

From (4) & (5),

LHS = RHS

\frac{3sinA-4sin^{3}A}{4cos^{3}A-3cosA}</p><p>=\frac{3tanA-tan^{3}A}{1-3tan^{2}A}

•••♪

Similar questions