Math, asked by ashartjymira, 1 year ago

If SecA+cosA= √3 then find the value of tanA + cot A

Answers

Answered by kvnmurty
2
The value of SecA + cosA is never less than 2.  The given question something is not right.  Let us assume  it is 3 instead of √3.

SecA + Cos A = 3    
=>  Cos² A - 3 cos A + 1 = 0
=>  cosA = [3 +- √(9-4) ]/2 =  (3 - √5 )/2
=>  SecA  =  2/(3-√5) = (3+√5)/2
=>  tan² A = (7+3√5) / 2
=> cot² A = 2/(7+3√5)  = (7-3√5)/2

(tan A + cotA)² = 7/2 + 7/2 + 2 = 9

Tan A + cot A = +3 or - 3

Similar questions