Math, asked by ramyasrighakollapu, 3 months ago

If secA + tan A = 4, then find the cos .​

Answers

Answered by Harshadabankar
1

Answer:

1.1333333

Step-by-step explanation:

this is the correct answer

Answered by Anonymous
4

\huge\mathcal\red{Given:-}

secA + tanA = 4

\huge\mathcal\red{To \:Find:-}

cosA = ?

\huge\mathfrak\red{Solution:-}

secA + tanA = 4

\implies\frac{1}{cosA} + {\frac{sinA}{cosA}} = 4

\implies\frac{1+sinA}{cosA}

Multiply \:both \:sides \:by \:cosA

\implies\frac{1+sinA \times cosA}{cos^2A}

\implies\frac{1+sinA \times cosA}{1 - sin^2A}

\implies\frac{1+sinA \times cosA}{1+sinA \times 1-sinA}

\implies\frac{cosA}{1-sinA} = 4

\implies{cosA = 4 -4sinA}

\implies{cosA = 4 \times 1- sinA}

Similar questions