if secA+tanA=2+5^1/2 then sinA+cosA=
Answers
Answered by
1
Answer:
3/(5^1/2)
Step-by-step explanation:
sec(A)+tan(A)=2+5^1/2 ------->eq1
sec(A)-tan(A)=1/(2+5^1/2) --------------->eq2 //(sec^2(A)-tan^2(A)=1)
eq1+eq2
====>sec(A)=5^1/2 ==>cos(A)=1/(5^1/2) --------->eq3
eq1==>(1+sin(A))/cos(A)=2+5^1/2
add 1 on both sides give (1+sin(A)+cos(A))/cos(A)=3+5^1/2
==>sin(A)+cos(A)=(3+5^1/2)*(cos(A))-1==>(3+5^1/2)/(5^1/2)-1;
===>(3+5^1/2-5^1/2)/(5^1/2)==>3/(5^1/2).
Answered by
0
Step-by-step explanation:
Given If secA+tanA=2+5^1/2 then sinA+cosA will be
- Given sec A + tan A = 2 + √5 -----------------1
- We know that sec^2 A – tan^2 A = 1
- So (sec A – tan A) (sec A + tan A) = 1
- So sec A – tan A = 1/sec A + tan 5A
- = 1/2 + √5
- Rationalizing the denominator we get
- = 1 x 2 - √5 / (2 + √5) (2 - √5)
- = 2 - √5 / 4 – 5
- = 2 - √5 / -1
- So sec A – tan A = √5 – 2 ------------- 2
- Equation 1 + 2 will give
- 2 sec A = 2 √5
- Or sec A = √5 -------------------- 3
- Or cos A = 1/√5
- Using eqn 3 in 1 we get
- √5 + tan A = 2 + √5
- Or tanA = 2
- Or sin A / cos A = 2
- Or sin A / 1 / √5 = 2
- Or √5 sin A = 2
- Or sin A = 2/√5
- Therefore Sin A + cos A = 2 / √5 + 1/√5
- = 2 + 1 / √5
- = 3/√5
Reference link will be
https://brainly.in/question/2855617
Similar questions