if secA+tanA=2+√5 then the value of sinA+cosA
Answers
Answered by
4
Given secA+tanA=2…. 1
S ince,sec^2A-tan^2A=1
Therefore, secA-tanA=1/2….2
Solving 1and 2
2secA=5/2
SecA=5/4
CosA=4/5
SinA=3/5
. : sinA+cosA=3/5+4/5=7/5
S ince,sec^2A-tan^2A=1
Therefore, secA-tanA=1/2….2
Solving 1and 2
2secA=5/2
SecA=5/4
CosA=4/5
SinA=3/5
. : sinA+cosA=3/5+4/5=7/5
poulami2:
thnx
Answered by
8
secA + tanA = 2+√5 - (i)
we know that
then
(secA - tanA)(secA+tanA) = 1
so
secA-tanA = 1/2+√5
secA - tanA = 1/2+√5 *2-√5 /2-√5
so
secA - tanA = 2-√5 /4-5
secA - tanA = 2-√5 /-1
secA - tanA = √5 -2 (ii)
equation (i) + (ii) gives
2secA = 2√5
secA = √5 (iii)
using equation (iii) in (i)
we got
√5 +tanA = 2+√5
tanA =2
as secA = √5
then
cosA = 1/√5 (iv)
tanA = SinA/CosA = 2 (v)
using equation (iv) in (v)
then
sinA / 1/√5 =2
√5 sinA =2
sinA = 2/√5
thus
SinA + cosA = 1/√5 + 2/√5
or
sinA + cosA = 3/√5
we know that
then
(secA - tanA)(secA+tanA) = 1
so
secA-tanA = 1/2+√5
secA - tanA = 1/2+√5 *2-√5 /2-√5
so
secA - tanA = 2-√5 /4-5
secA - tanA = 2-√5 /-1
secA - tanA = √5 -2 (ii)
equation (i) + (ii) gives
2secA = 2√5
secA = √5 (iii)
using equation (iii) in (i)
we got
√5 +tanA = 2+√5
tanA =2
as secA = √5
then
cosA = 1/√5 (iv)
tanA = SinA/CosA = 2 (v)
using equation (iv) in (v)
then
sinA / 1/√5 =2
√5 sinA =2
sinA = 2/√5
thus
SinA + cosA = 1/√5 + 2/√5
or
sinA + cosA = 3/√5
Similar questions