Math, asked by Mmta1234, 1 year ago

if secA-tanA=√2tanA then show that secA+tanA=√2secA

Answers

Answered by Anant02
12
here is the answer........
Attachments:
Answered by mysticd
4

 Given \:Sec A - tan A = \sqrt{2} tan A \: ---(1)

/* On squaring both sides ,we get */

 \implies (Sec A - tan A)^{2} = (\sqrt{2} tan A)^{2}

 \implies Sec^{2} A + tan^{2} A - 2sec A tan A = 2 tan^{2} A

 \implies Sec^{2} A - 2sec A tan A = 2 tan^{2} A-tan^{2} A

 \implies Sec^{2} A - 2sec A tan A =  tan^{2} A

 \implies Sec^{2} A =  tan^{2} A + 2SecA tan A

 \implies Sec^{2} A  + \pink {Sec^{2} A} =  tan^{2} A + 2SecA tan A + \pink {Sec^{2} A}

 \implies 2Sec^{2} A =  (tan A + SecA )^{2}

 \implies \sqrt{2Sec^{2} A }=  \sqrt{(tan A + SecA )^{2} }

 \implies \blue {\sqrt{2}Sec A =  tan A + SecA }

•••♪

Similar questions