Math, asked by sreekantareddy8919, 8 months ago

If secA+tanA=4 then cosA=​

Answers

Answered by Anonymous
2

\rm\huge\blue{\underline{\underline{ Question : }}}

If sec A + tan A = 4, then cos A = ?

\rm\huge\blue{\underline{\underline{Solution : }}}

Given that,

  • sec A + tan A = 4

To find,

  • Value of cos A

Let,

  • sec A + tan A = 4 ..... (1)

We know the trigonometric identity

  • sec² θ + cos² θ = 1

Then, we can write it as,

  • (sec θ + tan θ)(sec θ - tan θ) = 1 .

✒ Substitute the value of (1)

\sf\:\implies 4(\sec\theta - \tan\theta) = 1

\sf\:\implies \sec\theta - \tan\theta = \frac{1}{4} ..... (2)

From the equations (1) & (2). We get,

\sf\:\implies2 \sec\theta = 1 + \frac{1}{4}

\sf\:\implies2 \sec\theta =  \frac{4+1}{4}

\sf\:\implies \sec\theta =  \frac{5}{4} \times  \frac{1}{2}

\sf\:\implies \sec\theta = \frac{5}{8}

We know that, cos θ = 1/sec θ

\sf\:\implies \cos\theta = \frac{1}{\frac{5}{8}}

\sf\:\implies \cos\theta = \frac{8}{5}

\underline{\boxed{\bf{\purple{ \therefore \cos\theta = \frac{8}{5}}}}}\:\orange{\bigstar}

More Information :

\boxed{\begin{minipage}{7 cm} Fundamental Trigonometric Identities \\ \\$\sin^{2}\theta + cos^{2}\theta = 1 \\ \\ 1 + tan^{2}\theta = sec^{2}\theta \\ \\1 + cot^{2}\theta=\text{cosec}^2\, \theta$ \end{minipage}}

___________________________

Similar questions