Math, asked by Anonymous, 1 year ago

if SecA+tanA=a then find cosA=?​


shrutijain3232: apply sec a = 1/cosa n tan a = sina/ cos a
Anonymous: ma'am I'll try but ??
shrutijain3232: see my answer

Answers

Answered by sivaprasath
6

Answer:

Cos A = \frac{2a}{a^2 + 1}

Step-by-step explanation:

Given :

To find the value of Cos A , if Sec A + Tan A = a.

Solution :

We know that,

Sec²A - Tan²A = 1

(Sec A + Tan A) (Sec A - Tan A) = 1

a (Sec A - Tan A) = 1

⇒ Sec A - Tan A = \frac{1}{a}   ...(i)

(Sec A + Tan A) + (Sec A - Tan A) = a + \frac{1}{a}

2 Sec A =  \frac{a^2 + 1}{a}

Sec A = \frac{a^2 + 1}{2a}

As, Sec A= \frac{1}{CosA}

⇒ Cos A =  \frac{2a}{a^2 + 1}

Similar questions