If secA – tanA = k , then the value of secA + tanA is (a) 1 – 1/k (b) 1 - k (c) 1 + k (d) 1/k
Answers
Step-by-step explanation:
−1−secAtanA=2⋅cosecA
L.H.S
1+secAtanA−1−secAtanA
=1−sec2AtanA(1−secA)−tanA(1+secA)
=−tan2AtanA(1−secA−1−secA)
=−tanA−2secA
=sinA/cosA2⋅1/cosA
=sinA2
=2⋅cosecA
=R.H.S
∴ L.H.S=R.H.S.
Step-by-step explanation:
Answer:
Here is your answer...
K = sec A -tan A
R. H. S = 1- k²/1+k²
= 1-(sec A - tan A) ²/1+ (sec A -TanA ) ²
= 1- (sec A²+tanA²-2tanA Sec A) /1+(Sec A²+
tanA² -2 tan A Sec A)
(Since ( a-b) ² = a²+b²-2ab)
= 1- (tan A ² -1 +tan A²-2 tan A sec A /1+( sec A ²
1+tan A² -2 TanA sec A)
=2tan A² -2tan A sec A / 2 sec A² -2 tan A sec A
= 2tan A (Sec A -tan A) /2 sec A (sec A - tan A)
= Tan A / sec A
= sin A/ cos A/1/ cos A
= sin A/cos A × cos A/1
= sin A /1
= sin A = R. H. S
Hence proved....
Hope it helps...
Plz mark as brain liest answer...