Math, asked by kevikichu, 11 months ago

if secA+tanA=p, find:p2-1/p2+1

Answers

Answered by Shailesh183816
1

\bf\large\underline\pink{Solution:-}

________________❤

SecA+tanA=p ----------------------------(1)

We know that,

sec²A-tan²A=1

or, (secA+tanA)(secA-tanA)=1

or, p(secA-tanA)=1

or, secA-tanA=1/p -----------------------(2)

Adding (1) and (2) we get,

2secA=p+1/p

or, secA=(p²+1)/2p

∴, cosA=1/secA=2p/(p²+1)

∴, sinA=√(1-cos²A)

=√{1-4p²/(p²+1)²

=√{(p²+1)²-4p²}/(p²+1)²

=√(p⁴+2p²+1-4p²)/(p²+1)

=√(p²-1)²/(p²+1)

=(p²-1)/(p²+1) (Proved)

____________❤

\bf\huge\underline\red{Follow me}

Answered by Anonymous
0

\huge\purple{Answer:-}

SecA+tanA=p ----------------------------(1)

We know that,

sec²A-tan²A=1

or, (secA+tanA)(secA-tanA)=1

or, p(secA-tanA)=1

or, secA-tanA=1/p -----------------------(2)

Adding (1) and (2) we get,

2secA=p+1/p

or, secA=(p²+1)/2p

∴, cosA=1/secA=2p/(p²+1)

∴, sinA=√(1-cos²A)

=√{1-4p²/(p²+1)²

=√{(p²+1)²-4p²}/(p²+1)²

=√(p⁴+2p²+1-4p²)/(p²+1)

=√(p²-1)²/(p²+1)

=(p²-1)/(p²+1) (Proved)

Similar questions