Math, asked by bhatiraj8748, 3 months ago

If secA +tanA=p then find the value of p square-1/p square+1

Answers

Answered by Salmonpanna2022
3

Step-by-step explanation:

heya ✔

first of all ur question is incorrect..

question should be secA+tanA = p then prove that sinA=p^2-1/p^2+1

then.

secA+tanA=p. ________________(1)

1/secA+tanA*secA-tanA/tanA+SecA

【multiplied by secA-tanA on numerator and denominator】

•and secA-tanA/sec^2-tan^2A =1/p

✔so, secA-tanA=1/p

【you know sec^2A-tan^2A-1 here applied】+_________(2)

✔now subtracting Equation (2) from Equation (1) we get.

secA+tanA-sec +tanA=p-1/p

=>2tanA=p^2-1/p ___________(3)

and similarly ....

when adding Equation (1) and Equation (2) we get..

2secA=p^2+1/p _____________(4)

now,dividing Equation (3) and (4) we get..

2tanA/2secA=p^2-1/p^2+1

sinA=p^2+1/p^2+1 Ans..

Answer:-

Hence, proved sinA=p^2+1/p^2+1 .

I hope it's help you...☺

Similar questions