If secA +tanA=p then find the value of p square-1/p square+1
Answers
Answered by
3
Step-by-step explanation:
heya ✔
✘ first of all ur question is incorrect..
question should be secA+tanA = p then prove that sinA=p^2-1/p^2+1
then.
secA+tanA=p. ________________(1)
1/secA+tanA*secA-tanA/tanA+SecA
【multiplied by secA-tanA on numerator and denominator】
•and secA-tanA/sec^2-tan^2A =1/p
✔so, secA-tanA=1/p
【you know sec^2A-tan^2A-1 here applied】+_________(2)
✔now subtracting Equation (2) from Equation (1) we get.
secA+tanA-sec +tanA=p-1/p
=>2tanA=p^2-1/p ___________(3)
and similarly ....
when adding Equation (1) and Equation (2) we get..
2secA=p^2+1/p _____________(4)
now,dividing Equation (3) and (4) we get..
2tanA/2secA=p^2-1/p^2+1
sinA=p^2+1/p^2+1 Ans..
Answer:-
Hence, proved sinA=p^2+1/p^2+1 .
I hope it's help you...☺
Similar questions