if secA + tanA = p then find the value of secA
Answers
Answered by
16
secA+tanA=p ----------- (i)
‘.' sec²A-tan²A=1 (secA+tanA)(secA-tanA)=1
secA-tanA = 1/p ------------- (ii)
Subtracting eqn ii from I
We get,
2tanA= p-1/p
tanA = (p²-1)/2p
cotA = 2p/(p²-1)
Now
cosec²A-cot²A = 1
cosec²A=1+cot²A
cosec²A=1+[2p/(p²-1)]²
cosec²A= 1+4p²/(p²-1)²
cosec²A= (p²)² - 2p²- 1- 4p²/(p²-1)²
cosec²A= (p²)² + 2p²+1/(p²-1)²
cosec²A= (p²+1)² / (p²-1)²
cosecA= (p²+1)/p²-1)
‘.' sec²A-tan²A=1 (secA+tanA)(secA-tanA)=1
secA-tanA = 1/p ------------- (ii)
Subtracting eqn ii from I
We get,
2tanA= p-1/p
tanA = (p²-1)/2p
cotA = 2p/(p²-1)
Now
cosec²A-cot²A = 1
cosec²A=1+cot²A
cosec²A=1+[2p/(p²-1)]²
cosec²A= 1+4p²/(p²-1)²
cosec²A= (p²)² - 2p²- 1- 4p²/(p²-1)²
cosec²A= (p²)² + 2p²+1/(p²-1)²
cosec²A= (p²+1)² / (p²-1)²
cosecA= (p²+1)/p²-1)
Answered by
6
Answer:
Given :
sec A + tan A = p
I am replacing p by ' k '
sec A + tan A = k
We know :
sec A = H / B & tan A = P / B
H / B + P / B = k / 1
H + P / B = k / 1
So , B = 1
H + P = k
P = k - H
From pythagoras theorem :
H² = P² + B²
H² = ( H - k )² + 1
H² = H² + k² - 2 H k + 1
2 H k = k² + 1
H = k² + 1 / 2 k
P = k - H
P = k² - 1 / 2 k
Now write k = p we have :
Base = 1
Perpendicular P = P² - 1 / 2 P
Hypotenuse H = P² + 1 / 2 P
Value of sec A = H / B
sec A = P² + 1 / 2 P / 1
sec A = P² + 1 / 2 P
Therefore , we got value .
Similar questions
Math,
7 months ago
Math,
7 months ago
Social Sciences,
7 months ago
Social Sciences,
1 year ago
Math,
1 year ago
English,
1 year ago