If secA-tanA=p then find the value of tanA
Answers
Answered by
0
Answer:
sec A- tan A=p
1/cos A - sin A/cos A=p
(1-sin A)/cosA=p
sin A=(1-p^2)/(1+p^2)
cos A=2p/(1+p^2)
tan A=sin A/cos A
tan A=(1-p^2)/2p
Attachments:
Answered by
0
Answer:
Given :
sec A + tan A = p
I am replacing p by ' k '
sec A + tan A = k
We know :
sec A = H / B & tan A = P / B
H / B + P / B = k / 1
H + P / B = k / 1
So , B = 1
H + P = k
P = k - H
From pythagoras theorem :
H² = P² + B²
H² = ( H - k )² + 1
H² = H² + k² - 2 H k + 1
2 H k = k² + 1
H = k² + 1 / 2 k
P = k - H
P = k² - 1 / 2 k
Now write k = p we have :
Base = 1
Perpendicular P = P² - 1 / 2 P
Hypotenuse H = P² + 1 / 2 P
Value of tan A = P / B
tan A = P² - 1 / 2 P / 1
tan A = P² - 1 / 2 P
Therefore , we got value .
Similar questions