if secA+tanA=p,then find value of cosecA
Answers
Answer:
Step-by-step explanation:
secA+tanA=p ........................1
sec²A=1+tan²A (trignometric identity)
∴sec²A-tan²A=1
⇒(secA+tanA)(secA-tanA)=1 [a²-b²=(a+b)(a-b)]
⇒p(secA-tanA)=1 (from .......1)
⇒secA-tanA=1/p......................2
Now we have two equations: ........1 and...........2.
On adding .......1 and ........2 , we see that tanA gets cancelled and we get,
2secA=p+1/p
⇒2secA=(p²+1)/p
⇒secA=(p²+1)/2p
∴cosA=2p/(p²+1) [∵ cosA= 1/secA]
Now Consider a right angled Δ,right angled at B.
we know that cosA=adjacent side/hypotenuse
∴AB=2p and AC=p²+1 Now we have to find BC , which we can find on applying pythoguras thearm:
AC²=AB²+BC² (PYTHOGURAS)
BC²=AC²-AB²
=(p²+1)²-(2p)²=p^4+1+2p²-4p²=p^4+1-2p²=(p²-1)²
∴BC²=(p²-1)²
⇒BC=p²-1
∵cosecA=AC/BC
=(p²+1)/(p²-1)
CosecA=(p²+1)/(p²-1)
Given
Eq (1)
EQ (2)
so Substract eq (2) from (1) we , get
so ,
so,
put Value. of Cot (alpha )