Math, asked by praneshmay, 1 year ago

If ( secA + tanA ) ( secB + tanB) ( secC + tanC ) = ( secA - tanA ) ( secB - tanB ) ( secC - tanC ). Prove that each of the side is equal to + or - 1

Answers

Answered by Killer9996
3

=(1/cosA+sinA/cosA)(1/cosB+sinB/cosB)(1/cosC+sinC/cosC)=(1/cosA-sinA/cosA)(1/cosB-sinB/cosB)(1/cosC-sinC/cosC)

=(1+sinA/cosA)(1+sinB/cosB)(1+sinC/cosC)=(1-sinA/cosA)(1-sinB/cosB)(1-sinC/cosC)

Now, [squaring both the sides]

=

  {(1+sinA/cosA)}^{2}  {(1+sinb/cosb)}^{2}  {(1+sinc/cosc)}^{2}  = {(1 - sinA/cosA)}^{2}  {(1 - sinb/cosb)}^{2}  {(1 - sinc/cosc)}^{2}

Therefore after opening bracket it will be

 ({ - cosA/Cosa})^{2} ({ - cosb/cosb})^{2}( { - cosc/cosc})^{2}= ( {cosA/cosA})^{2}(  cosb/cosb)^{2} ( {cosc/cosc})^{2}

Therefore cos/cos will be canel so, now

=

  - {1}^{2}  \times  -  {1}^{2}  \times   - {1}^{2}  =  {1}^{2}   \times  {1}^{2}  \times  {1}^{2}

= - 1=1

Hence, proved

Answered by Anonymous
32

 \boxed{answer}

see in attachment...............

Attachments:
Similar questions