If SecA+TanA=x , find SinA and CotA
Answers
Question
If sec A + tan A = x
find sin A and cot A.
Solution
we have,
→ sec A + tan A = x ...( Name it as eqn 1 )
squaring both sides
→ sec²A + tan²A + 2 sec A tan A = x²
using identity : sec² A= 1 + tan²A
→ 1 + tan²A + tan²A + 2 sec A tan A = x²
→ 1 + 2 tan²A + 2 sec A tan A = x²
→ 2 tan²A + 2 sec A tan A = x² - 1
taking 2 tan A common in LHS
→ 2 tan A ( tanA + secA ) = x² - 1
using: sec A + tan A = x (given)
→ 2 tan A · x = x² - 1
→ 2 tan A = ( x² - 1 ) / x
→ tan A = ( x² - 1 ) / ( 2x )
so, → cot A = 2x / (x² - 1 )
__________________________________
Let us now find the value of sin A
as we know
→ sec² A - tan² A = 1
→ ( sec A+ tan A)(sec A - tan A) = 1
→ x ( sec A - tan A ) = 1
→ ( sec A - tan A ) = 1 / x .... eqn (2)
adding eqn (1) and (2)
sec A + tan A + sec A - tan A = x + (1/x)
2 sec A = ( x² + 1 ) / x
→ sec A = ( x² + 1 ) / 2x
so,
→ cos A = 2x / (x²+1)
Now,
as we know
tan A = sin A / cos A
→ sin A = tan A · cos A
→ sin A = (x²-1)/2x · 2x / (x²+1)
→ sin A = (x²-1)/(x²+1)
Step-by-step explanation:
Given:
sec A + tan A = x ---(1)
To find:
sinA and cotA
Solution:
As we know,
sec² A - tan² A = 1
or, (sec A + tan A)(sec A - tan A) = 1
or, x(sec A - tan A) = 1 [from ---(1)]
or, sec A - tan A = 1/x ----(2)
Subtracting (2) from (1) ,
Now,
Then,
Used Trigonometry Rules:
tanø . cotø = 1
sec²ø - tan²ø = 1
Used Algebra Rules: