Math, asked by gu1ddogarwazeetikar, 1 year ago

If secA+tanA=x,prove that sinA=x^2-1/x^2+1.

Answers

Answered by mysticd
3

 Given \:secA + tan A = x \: --(1)

/* Multiplying both sides of the equation by

(sec A - tan A ) , we get */

 \implies (secA+tanA)(secA-tanA) = x(secA-tanA)

 \implies sec^{2} A - tan^{2} A = x(secA-tanA)

 \implies 1 = x(secA-tanA)

 \boxed {\pink {Since ,sec^{2}A - tan^{2} A = 1 }}

 \implies \frac{1}{x} = secA - tan A \: --(2)

 Subtract equation (2)  from equation (1) , we get */</p><p>[tex] \implies 2tan A = x - \frac{1}{x}

 \implies 2tan A = \frac{(x^{2} - 1)}{x}\: --(3)

/* Adding equation (1) and equation (2) , we get */

 \implies 2secA = x + \frac{1}{x}

 \implies 2sec A = \frac{(x^{2} + 1)}{x}\: --(4)

 Now, Do \: Equation\: (3) \div Equation\: (4) ,\\ we \: get

 \implies \frac{2tanA}{2secA } = \frac{\frac{x^{2}-1}{x}}{\frac{x^{2}+1}{x}}

 \implies \frac{\frac{sin A}{cosA}}{\frac{1}{cos A }} = \frac{x^{2}-1}{x^{2}+1}

 \implies sinA = \frac{x^{2}-1}{x^{2}+1}

 Hence , proved .

•••♪

Similar questions