if secA-tanA=x show that x2+1/x2-1=-cosecA
Answers
Answered by
23
Given : x = Sec A - tan A ,
To show x2 + 1x2 − 1 = − Cosec A ,
We take LHS :
x2 + 1 / x2 − 1 =
(Sec A − tan A)2 + 1 / (Sec − tan A)2 − 1
= Sec2 A + tan 2A − 2 Sec A tan A+ 1 / Sec2 A + tan 2A − 2 Sec A tan A − 1
= Sec2 A + (tan 2A + 1) − 2 Sec A tan A / tan 2A +( Sec2 A − 1) − 2 Sec A tan A
= Sec2 A + Sec2 A− 2 Sec A tan A / tan 2A +tan 2− 2 Sec A tan A
[We know Sec2− tan 2A =1]
= 2 Sec2 A − 2 Sec A tan A / 2 tan 2A − 2 Sec A tan A
= 2 Sec A (Sec A −tan A) / 2 tan A (tan A −Sec A )
= − 2 Sec A (tan A −Sec A ) / 2 tan A (tan A −Sec A )
= − Sec A / tan A
= − Sec A / Sin A /CosA
[tan θ = Sin θ/Cos θ]
= − Cosec A Sec A / Sec A
[Cosec θ = 1 / Sin θ , Sec θ = 1/ Cos θ]
= − Cosec A
So,
LHS = RHS ( Hence proved )
#racks
To show x2 + 1x2 − 1 = − Cosec A ,
We take LHS :
x2 + 1 / x2 − 1 =
(Sec A − tan A)2 + 1 / (Sec − tan A)2 − 1
= Sec2 A + tan 2A − 2 Sec A tan A+ 1 / Sec2 A + tan 2A − 2 Sec A tan A − 1
= Sec2 A + (tan 2A + 1) − 2 Sec A tan A / tan 2A +( Sec2 A − 1) − 2 Sec A tan A
= Sec2 A + Sec2 A− 2 Sec A tan A / tan 2A +tan 2− 2 Sec A tan A
[We know Sec2− tan 2A =1]
= 2 Sec2 A − 2 Sec A tan A / 2 tan 2A − 2 Sec A tan A
= 2 Sec A (Sec A −tan A) / 2 tan A (tan A −Sec A )
= − 2 Sec A (tan A −Sec A ) / 2 tan A (tan A −Sec A )
= − Sec A / tan A
= − Sec A / Sin A /CosA
[tan θ = Sin θ/Cos θ]
= − Cosec A Sec A / Sec A
[Cosec θ = 1 / Sin θ , Sec θ = 1/ Cos θ]
= − Cosec A
So,
LHS = RHS ( Hence proved )
#racks
Answered by
12
Answer:
ur ans ..is in attachment
..
Attachments:
Similar questions